EE103 HW#2 Assigned on Oct. 9, 2017

Prob. 1

- **2.19.** Consider the trapezoidal pulse of Figure P2.19(a).
 - (a) Write a mathematical function for this waveform.
 - (b) Varify the results of Part (a) using the procedure of Example 2.12

Figure P2.19

84

Continuous-Time Signals and Systems

Chap. 2

(c) Write a mathematical function for the waveform of Figure P2.19(b), using the results of Part (a).

Prob. 2

2.13. For each signal, if it is periodic, find the fundamental period T_0 and the fundamental frequency ω_0 . Otherwise, prove that the signal is not periodic.

(a)
$$x(t) = \cos 3t + \sin 5t$$
.

(b)
$$x(t) = \cos 6t + \sin 8t + e^{j2t}$$
.

(c)
$$x(t) = \cos t + \sin \pi t$$
.

(d)
$$x(t) = x_1(t) + x_2(3t)$$
 where $x_1(t) = \sin(\frac{\pi t}{6})$ and $x_2(t) = \sin(\frac{\pi t}{9})$.

Prob. 3

2.27. (a) Determine whether the system described by

$$y(t) = \cos[x(t-1)]$$

is

(i) memoryless,

(ii) invertible,

(iii) causal,

(iv) stable,

(v) time invariant, and

(vi) linear.

(b) Repeat Part (a) for

$$y(t) = 3x(3t+3).$$

(c) Repeat Part (a) for

$$y(t) = \ln[x(t)].$$

(d) Repeat Part (a) for

$$y(t) = e^{tx(t)}.$$

- **2.23.** (a) Express the output y(t) as a function of the input and the system transformations, in the form of (2.56), for the system of Figure P2.23(a).
 - **(b)** Repeat Part (a) for the system of Figure P2.23(b).

- (c) Repeat Part (a) for the case that the summing junction with inputs $y_3(t)$ and $y_5(t)$ is replaced with a multiplication junction, such that its output is the product of these two signals.
- (d) Repeat Part (b) for the case that the summing junction with inputs $y_3(t)$, $y_4(t)$, and $y_5(t)$ is replaced with a multiplication junction, such that its output is the product of these three signals.

- **3.6.** A continuous-time LTI system has the input x(t) and the impulse response h(t), as shown in Figure P3.6. Note that h(t) is a delayed function.
 - (a) Find the system output y(t) for only $4 \le t \le 5$.
 - **(b)** Find the maximum value of the output.
 - (c) Find the ranges of time for which the output is zero.
 - (d) Solve for and sketch y(t) for all time, to verify all results.

Figure P3.6